

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

riogramme outcomes - Department of mathematics (r u)	
GPO No.	Programme Outcomes
	To provide the students with knowledge, abilities and insight
PO1	of Mathematics and computational techniques for getting
	employability in any field.
PO2	To impart qualitative inputs to the students for CSIR – JRF,
PO2	GATE and Competitive Examinations.
PO3	To acquire advanced knowledge to pursue higher studies
F03	and research.
PO4	To inculcate the students with the knowledge of handling
104	technologies with secure.
PO5	To apply mathematical concept, knowledge and practice in
P05	Scientific Research.
PO6	To be academically honest and spiritually inspiring citizens.
PO7	To teach and share Mathematics effectively using various
	instructional strategies.

Programme Outcomes - Department of Mathematics (PG)

Programme Specific Outcomes - Department of Mathematics (PG)

PSO No.	Intended Programme Specific Outcomes
PSO1	To acquire Mathematical and Statistical skills which will enable them to have successful career.
PSO2	To formulate complete, concise, correct Mathematical proofs and theoretical ideas in their relevant areas of Mathematical research.
PSO3	To strengthen the students logical and analytical ability to deal with the generality and abstraction of Mathematical principles.

Affiliated to Manonmaniam Sundaranar University - Tirunelveli. (Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Course Outcome – Department of Mathematics

M.Sc., Mathematics

First Semester

Core - 1Group Theory (P21MA101)

CO No.	Course Outcome
	remember and understand the concept of Groups,
CO1	homomorphism, automorphism, permutation groups, Sylow's
	theorem and direct products
CO2	Demonstrate normal subgroups, quotient groups, automorphism,
02	permutation groups, Sylow's theorem, direct product
CO3	analyze the properties of homomorphism, automorphism,
	counting principle, Sylow's subgroups and finite abelian group
	Argue Cauchy's theorem, Sylow's theorem for Abelian groups,
CO4	solvable group, Sylow's theorems, in variants. Evaluate class
	equation of finite groups
CO5	solve the different types of problems using class equations and
	Sylow's theorems. Solve the problems in Solvable groups,
	Permutation group and finite abelian groups

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core – 2 Analysis-I (P21MA102)

CO No.	Course Outcome
CO1	remember and understand the basic concepts metric spaces, numerical sequences and series, continuity and differentiability
CO2	demonstrate the knowledge of compact sets, limits of sequences, tests of convergence of series, properties of continuous and differentiable functions
CO3	Analyze Weier strass theorem, perfect sets, series of non negative terms, absolute convergence, power series, characterization of continuity and Mean value theorems
CO4	Determine the structure of connected subsets, the series expansion of e, additional, multiplication and Cauchy product of series, discontinuities, monotone functions, rules of differentiability
CO5	Derived derivative of higher order, finding solutions of problems in metric spaces, sequences, series and continuous functions

Affiliated to Manonmaniam Sundaranar University – Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core – 3 Ordinary Differential Equations (P21MA103)

CO No.	Course Outcome
CO1	remember and understand the concepts of linear equations, power series solutions, singular points and some special functions the system of first order equations
CO2	demonstrate general solution of homogenous equation and Bessel function, power series solutions, regular and singular points, linear systems
CO3	analyze the solution of homogenous equation, power series solution of first order and second order equation, Legendre polynomials, properties of some special functions, homogeneous linear system
CO4	evaluate different types of solutions for second order linear homogenous equations, singular points, regular points and some special functions and homogenous linear systems
CO5	find the solution for Homogeneous linear differential equations, homogeneous linear system, series solution of first and second order

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Carlow College
I Z
And and a second

Core – 4

.....

Probability and Statistics (P21MA104)

CO No.	Course Outcome
CO1	remember and understand the basic concept of probability and
	statistics and some special distributions, transformation of
	variables, distributions of functions of random variables
	Illustrate conditional probability, change of variable techniques,
CO2	binomial and poission distribution, transformation of variable of
	discrete type and change of variable technique
	Analyze conditional distribution, gamma and chi-square
CO3	distribution, transformation of variable of continuous type,
	distribution of order statistics
CO4	determine limiting distributions, correlation coefficient, normal
	distributions, t and F distribution, m.g.f.
CO5	solve the problems using various types of distributions

Core – 5

Number Theory (P21MA105)

CO No.	Course Outcome
CO1	remember and understand the concept of theory of numbers,
	some special functions and congruences
	apply the concept inDivisibility, multiplicative functions, prime
CO2	number theorem, residue classes, Lagrange's theorem and
	Chinese remainder theorem
СОЗ	analyze Euclidean algorithm, Bell series, Relations connecting
003	$\vartheta(x)$ and $\pi(x)$, linear congruences and polynomial congruences
	evaluate the Dirichelet product of arithmetic functions, Dirichlet
004	inverses and Mobius inversion formula. Also a product formula
CO4	for $\phi(n)$, some equivalent forms of the prime number theorem and
	polynomial congruence with prime power moduli
	solve the problems in Divisibility, Some Special functions,
CO5	Chebyshev's Functions , Congruences and polynomial
	congruences

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Second Semester

Core - 6 **Ring Theory (P21MA206)**

CO No.	Course Outcome
CO1	Remember the basic concepts of Ring theory and understand
	rings, ideals, Euclidean rings, polynomial rings, radicals of a ring,
	direct sum of rings
	demonstrate fundamental theorem of homomorphism, Fermat's
CO2	theorem, Gauss lemma, Eisenstein criterion. Present certain
02	radical of a ring, Jordan radical of a ring, semi simple ring, nil
	radical ring, primary ring, quasi regular, J. Semi simple
CO3	analyze the concept ofrings, ideal, Euclidean ring, polynomial
	rings, radicals of a ring, direct sum of rings
CO4	argue ideals, quotient ring, the field of quotient of an integral
	domain, Euclidean ring, polynomial rings, radical of a ring, direct
	sum of rings
CO5	solve the problems in rings, ideals, Euclidean rings, polynomial
	rings, radicals of a ring, direct sum of rings

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

(Re-Accr (Affiliated to Manon (Under the Management of The Kuppusamy N Core – 7 An

Analysis-II (P21MA207)

CO No.	Course Outcome
CO1	remember and understand the concepts of Riemann Stieltjes
	integrals, integration and differentiation, uniform convergence,
	some special functions and fourier series
	Demonstrate Riemann Stieltjes integrals, criterion for uniform
CO2	convergence, Stone Weirstrass theorem, Abel's theorem,
	orthogonal system of functions
CO3	analyze the concept of Riemann Stieltjes integrals, integration
	and differentiation, uniform convergence, some special functions
	and fourier series
CO4	Determine the properties of Riemann Stieltjes integrals, criterion
	for uniform convergence, equicontinuous families of functions.
	Evaluate the solution for some special functions and series
CO5	solve the problems in Riemann Stieltjes integrals, integration and
	differentiation, uniform convergence, some special functions and
	fourier series

Core – 8

Graph Theory(P21MA208)

CO No.	Course Outcome
CO1	remember the concepts of graphs, trees, blocks, cliques, matching and colouring
CO2	demonstrate graph isomorphism, adjacency matrices, bonds, connectivity, matching and colouring, covering, Vizing's theorem, Ramsey's theorem, Turan's theorem, Brooks theorem and Hajos conjecture
CO3	Analyze path, connection, trees, cut vertices, blocks, matching, covering, independent sets, cliques, vertex and edge colouring
CO4	determine graph isomorphism, adjacency matrices, bonds, connectivity, matching and colouring, covering,
CO5	Find the solutions of real life problems using graph theory concepts

G.VENKATASWAMY NAIDU COLLEGE (Autonomous), KOVILPATTI. Affiliated to Manonmaniam Sundaranar University – Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core – 9

Combinatorics (P21MA209)

CO No.	Course Outcome
CO1	remember and understand the concept of counting Principles, distributions, generating functions, recurrence relation, inclusion and exclusion formula
CO2	Apply counting Principles, distribution of distinct objects. Demonstrate generating functions , recurrence relation models and inclusion-exclusion formula
CO3	Analyze simple arrangements and selections, distribution of identical objects, partitions, divided and conquer relations and derangement
CO4	Determine arrangement and selection with repetitions, rook polynomial. Evaluate binomial identities, exponential generating functions, solutions of linear recurrence relations
CO5	formulate recurrence relation for counting problems and solve them using known techniques including the generating functions

G.VENKATASWAMY NAIDU COLLEGE (Autonomous), KOVILPATTI. Affiliated to Manonmaniam Sundaranar University – Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Operations Research (P21MA210)

CO No.	Course Outcome
	Remember and understand the concepts of transportation
CO1	models, network analysis, integer linear programming, inventory
	theory and queuing theory
	apply transportation algorithm, minimal spanning tree algorithm,
CO2	algorithms in integer linear programming, network analysis,
	inventory model, birth and death models
	Analyze transportations models, maximum flow model, integer
CO3	linear programming solutions inventory models and queuing
	models
	evaluate transportation problem, shortest route problems ,
CO4	Integer programming problem, shortest path problem, problems
	in inventory theory and Queuing model
	solve the problems in Transportation model, integer linear
CO5	programming, network analysis, inventory theory and Queuing
	Theory

Core - 10

Core Elective – I

LATEX (P21MA2E1A)

CO No.	Course Outcome
CO1	remember and understand the concepts of LATEX software while
	preparing a Document and the Mathematical formulas
CO2	use of LATEX and various templates acquired from the course to
	compose Mathematical documents, Presentation and reports.
CO3	analyze various templates acquired from the course to compose
	Mathematical documents
CO4	elucidate boxes, tables, document layout, article formation,
	basics of LATEX file
CO5	create an article and construct a table using LATEX

Affiliated to Manonmaniam Sundaranar University – Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli).

(Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core Elective – I

Python Language (P21MA2E1B)

CO No.	Course Outcome
CO1	to implement basic concepts of operators and functions.
CO2	to Review various string, list, tuple and dictionaries.
CO3	To analyze the concept of classes and objects.
CO4	to evaluate the functionality of an exception handling.
CO5	

Core Elective – I

C ++ Programming (P21MA2E1C)

CO No.	Course Outcome
CO1	write a psudo code for a given problem and convert the same to a
	C++ program that works
CO2	discover errors in a C++ program and to fix them using proper
	tools and methodology .
CO3	critique a C++ program and describe ways to improve it
CO4	Choose the required Linux commands to develop C++ programs in
	a command-line environment
CO5	

Core Elective Lab – I

LATEX Lab (P21MA2EPA)

CO No.	Course Outcome	
CO1	remember the basic concepts of LATEX and write programs to	
	display paragraph format and definition	
CO2	apply the concepts of document layout and organization to	
	execute programs to display figure and theorem with proof	
CO3	analyze the boxes types and use it to display the table content	
CO4	execute LATEX program to display body of the letter and	
	matrices	
CO5	compose a LATEX program to prepare an article	

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core Elective Lab – I

Python Lab (P21MA2EPB)

CO No.	Course Outcome
CO1	remembering the basic concepts of python and write programs to
	calculate area of triangle, print prime numbers and find HCF
CO2	apply string methods and built in list methods to execute
02	programs
CO3	generate Fibonacci sequence using recursion
CO4	assess exception handling
CO5	develop pythons program for simple calculator and cube of
	numbers between 1 and 10.

Core Elective Lab - I C ++ Programming Lab (P21MA2EPC)

CO No.	Course Outcome
CO1	understand the basic operations of C++ and execute simple programs using functions, classes and objects
CO2	apply the various concepts of functions and execute programs using friend function, in-line function, virtual functions
CO3	analyze operator overloading and develop programs to add complex numbers and multiply matrices
CO4	illustrate the use of arrays of objects
CO5	develop C++ programs to implement pay bill application, Mark list application using files

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Third Semester

Core - 09

Topology (P20MA309)

CO No.	Course Outcome	
CO1	remember and understand the concepts of closed sets and limit points, continuous functions, connected spaces, compact and local compact spaces, normal spaces, Urysohn Metrization theorem	
CO2	apply the concepts of topological spaces, closed sets and limit points, continuous functions, product topology, connected and compact spaces, normal spaces and Urysohn Metrization theorem	
CO3	analyze the concepts of topological spaces, closed sets and limit points, continuous functions, product topology, connected and compact spaces, normal spaces and Urysohn Metrization theorem	
CO4	evaluate the problems in topological spaces, closed sets and limit points, continuous functions, product topology, connected and compact spaces, countability axioms, separation axioms, normal spaces, local compactness and Urysohn Metrization theorem	
CO5	develop the creative thinking in closed sets and limit points, continuous functions, product topology, compact and local compact spaces, connected spaces, normal spaces, product topology, Urysohn Metrization Theorem and Tietze extension theorem using Urysohn lemma	

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core – 10	Measure and Integration	(P20MA310)
-----------	--------------------------------	------------

CO No.	Course Outcome
	remember the concept of set functions and their properties and
CO1	understand the concepts of outer measure and the Lebesgue
	measure
CO2	apply the theory of the course to solve a variety of problems at
	an appropriate level of difficulty
	analyze the concept of general Lebesgue measure, measurable
CO3	functions, Lebesgue integration and differentiability, absolutely
	continuous functions and signed measures
	evaluate the problems regarding Lebesgue measure, measurable
CO4	functions, Lebesgue integration and differentiability, absolutely
	continuous functions and signed measures
CO5	construct different measure using outer measure

Core 11

Linear Algebra (P20MA311)

CO No.	Course Outcome
CO1	remember and understanding the essential aspects of vector
001	spaces, linear transformations and matrix algebra
	apply the principles of matrix algebra to find properties of linear
CO2	transformations and demonstrate the Hermitian, Unitary and
	normal transformations
CO3	analyze vector spaces, linear transformations, canonical forms,
003	matrices and transformations
	determine characteristic roots, trace, transpose, determinant of
CO4	matrices, canonical forms, hermitian, unitary and normal
	transformations
CO5	solve the problems in matrix algebra and vector spaces

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli).

(Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core - 12Partial Differential Equations (P20MA312)

CO No.	Course Outcome
CO1	remember and understand the concepts of partial differential
001	equations
	solve differential equations, apply charpit's method, cauchy's
CO2	method, find the first order differential equations, linear partial
	differential equations and separation of variables
	analyze the partial differential equations using separation of
CO3	variable techniques, Compatible systems of First order Equations,
	linear partial differential equations and separation of variables
CO4	evaluate the solution of partial differential equations using
	different method
CO5	find the solutions for partial differential equations

EmployabilityEnhancement:MathematicsforCompetitiveExaminations(P20MA3EE)

CO No.	Course Outcome
CO1	acquisition of Knowledge
CO2	bring desired changes in students attitude
CO3	improve the learning skills of the students
CO4	develop creativity and efficient thinking
CO5	

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

SEC – II MATLAB (P20MA3S2)

CO No.	Course Outcome
CO1	understand and remember the concept of matrices, vectors and basic comments of MATLAB
CO2	perform input output file types. Apply the concept of linear algebra, script files and function files. Determine plotting and solution of system of linear equations
CO3	analyze platform dependence, language specific features. Illustrate matrices, vectors, eigen values, eigen vectors and two dimensional plots
CO4	determine general commands, matrix and array operations, advanced data objects, matrix factorization, three dimensional plots
CO5	develop programme skills in MATLAB

SEC – II

MATLAB Lab (P20MA3SP)

CO No.	Course Outcome
CO1	remember and understand Vector spaces, Banach spaces,
	imbedding, Hilbert spaces, conjugate space and Spectral theory
CO2	apply Banach spaces, imbedding, Hilbert spaces, conjugate space
	and Spectral theory
CO3	analyze the concepts of Banach spaces, imbedding, Hilbert
	spaces, conjugate space and Spectral theory
CO4	evaluate the problems in Banach spaces, imbedding, Hilbert
	spaces, conjugate space and Spectral theory
CO5	find the solutions of various types of problems in Banach spaces,
	Hilbert spaces and conjugate spaces

Affiliated to Manonmaniam Sundaranar University - Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core – 13

Functional Analysis (P20MA413)

CO No.	Course Outcome
CO1	remember and understand Vector spaces, Banach spaces,
	imbedding, Hilbert spaces, conjugate space and Spectral theory
CO2	apply Banach spaces, imbedding, Hilbert spaces, conjugate space
	and Spectral theory
CO3	analyze the concepts of Banach spaces, imbedding, Hilbert spaces,
	conjugate space and Spectral theory
CO4	evaluate the problems in Banach spaces, imbedding, Hilbert
	spaces, conjugate space and Spectral theory
CO5	find the solutions of various types of problems in Banach spaces,
	Hilbert spaces and conjugate spaces

Core – 14

Complex Analysis (P20MA414)

CO No.	Course Outcome
CO1	remember and understand analytic functions, conformal mapping,
	complex integration, highest derivatives residues
CO2	demonstrate polynomials, linear transformations, Cauchy's
	theorem, zeros and poles, Residue theorem
CO3	analyze power series, cross ratio, Cauchy's theorem in a disc, local
	mapping theorem, argument principle
CO4	determine the limit of an analytic function, properties of line
	integrals. Evaluate the value of an analytic function using
	Cauchy's integral formula and evaluate definite integrals
CO5	develop further properties of analytic function using complex
	integration

Affiliated to Manonmaniam Sundaranar University – Tirunelveli.

(Re-Accredited with 'A' Grade by NAAC) (Affiliated to Manonmaniam Sundaranar University, Tirunelveli). (Under the Management of The Kuppusamy Naidu Charity Trust for Education and Medical Relief, Coimbatore-37)

Core – 15

Field Theory (P20MA415)

CO No.	Course Outcome
CO1	remember the extensions of a given field and understand the concept of splitting field and Galois theory
CO2	demonstrate the concept of extension fields, finite fields, root of polynomials, elements of Galois theory, finite fields and some special theorems
CO3	analyze the concept of the extension fields, finite fields, root of polynomials, elements of Galois theory, finite fields and some special theorems
CO4	determine the roots of polynomials and splitting fields of a polynomial and some special theorems
CO5	construct various types of splitting fields with its example

Core - 16

Numerical Analysis (P20MA416)

CO No.	Course Outcome
CO1	remember and understand the concepts of interpolation,
	numerical differentiation and integration, numerical solutions of
	ODE and predictor corrector methods
CO2	demonstrate different formulas and methods
CO3	analyze interpolation, numerical differentiation and integration,
	numerical solutions of ODE and various methods
CO4	evaluate the problems on interpolation, numerical differentiation
	and integration using various methods
CO5	develop the practical knowledge on solving problems using
	numerical methods